
Signal Cables

tel (65) 6367 0107 fax (65) 6365 2963 www.keystone-cable.com

250V or 300/500V Multi-Core PVC Insulated, Braided Screen, PVC Sheathed Flexible Cable

Description: CU/PVC/TCWB/PVC

Model Code: LiYCY

Application:	For computer, data transmission, office equipment process control, and instrumentation usage where EMI protection is required.						
Voltage rating:	250V (0.14 ~ 0.25mm²); 300/500V (0.34 ~ 0.5mm²)						
Construction: Fine plain annealed copper, PVC insulated, polyester tape wrapping, tinned copper wir braided screen, PVC sheathed cable							
Core colour :	According to Table 13 (page 48)						
Sheath colour:	Grey						
Specification:	VDE 0812, IEC 60332-1-2						
Operating	Static : -30°C ~ 70°C						
temperature:	Flexing : -5° C ~ 70° C						
Insulation resistance :	Min. 200MΩ·km						

	Cond	uctor	Insulation		Approx.	Approx.	
No. of Core	Nominal Area	No./Diam. of Strand	Thickness	Part No.	Overall Diam.	Weight	
_	(mm²)	(no./mm)	(mm)	-	(mm)	(kg/km)	
2				00023827	3.9	20	
3				00033827	4.1	28	
4				00043827	4.3	33	
5				00053827	4.6	38	
6				00063827	4.9	38	
7				00073827	4.9	49	
8				00083827	5.8	56	
10	0.14	18/0.10	0.3	00103827	6.1	66	
12				00123827	6.3	78	
14				00143827	6.7	80	
16				00163827	7.0	90	
18				00183827	7.3	104	
20				00203827	7.7	116	
25				00253827	8.6	149	
30					00303827	8.9	158
2				01023827	4.5	32	
3				01033827	4.7	37	
4				01043827	5.0	41	
5				01053827	5.6	51	
6				01063827	6.0	58	
7				01073827	6.0	65	
8				01083827	7.1	73	
10	0.25	14/0.15	0.3	01103827	7.5	82	
12				01123827	7.7	98	
14				01143827	8.0	99	
16				01163827	8.4	124	
18				01183827	8.8	143	
20				01203827	9.3	152	
25				01253827	10.7	172	
30				01303827	11.0	189	
			-		. ———		

Current ratingPlease refer to Table 15 (Page 49)
For Rating Factors, please refer to Table 7 (Page 45)

Signal Cables

tel (65) 6367 0107 fax (65) 6365 2963 www.keystone-cable.com

250V or 300/500V Multi-Core PVC Insulated, Braided Screen, PVC Sheathed Flexible Cable

Model Code: LiYCY

Description: CU/PVC/TCWB/PVC

Conductor Insulation Approx. Approx. No. of Nominal No./Diam. Overall Diam. Weight Part No. Thickness Core of Strand Area (no./mm) (kg/km) (mm²) (mm) (mm) 02023865 2 4.9 37 02033865 5.1 3 49 02043865 59 4 5.7 02053865 5 6.2 66 6 02063865 6.8 79 02073865 6.8 83 8 02083865 7.8 94 129 0.34 7/0.25 10 0.4 02103865 8.3 142 12 02123865 8.5 8.9 154 14 02143865 02163865 9.4 160 16 173 18 02183865 10.2 20 10.7 192 02203865 25 02253865 12.0 260 30 02303865 12.5 292 04023865 2 5.6 54 3 04033865 5.9 67 4 04043865 6.5 77 5 04053865 7.0 90 7.8 6 04063865 104 7.8 112 04073865 8 0.5 16/0.20 0.4 04083865 8.7 135 10 04103865 9.5 160 12 9.8 177 04123865 18 04183865 11.8 239 20 04203865 12.2 276 25 04253865 352 14.0 30 04303865 14.8 399

Current ratingPlease refer to Table 15 (Page 49)
For Rating Factors, please refer to Table 7 (Page 45)

Table 6 : Correction Factors for Ambient Temperature & Group Installation

Correction for groups of more than one circuit of single-core cables, or more than one multi-core cable.

			Correction Factor (Cg)												
Reference Methods of Installation		Number of Circuits or Multi-Core Cables													
		2	3	4	5	6	7	8	9	10	12	14	16	18	20
Enclosed (Method 3 or 4) or bunched and clipped to a non-metallic surface (Method 1)		0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.48	0.45	0.43	0.41	0.39	0.38
Single layer clipped to a non-metallic surface	Touching	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.70	-	-	-	-	-	-
(Method 1)	Spaced*	0.94	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Single layer multi-core on a perforated metal cable tray	Touching	0.86	0.81	0.77	0.75	0.74	0.73	0.73	0.72	0.71	0.70	-	-	-	-
(Method 11)	Spaced*	0.91	0.89	0.88	0.87	0.87	-	-	-	-	-	-	-	-	-
Single layer single-core on a perforated metal cable tray,	Horizontal	0.90	0.85	-	-	-	-	-	-	-	-	-	-	-	-
touching (Method 11)	Vertical	0.85	-	-	-	-	-	-	-	-	-	-	-	-	-
Single layer multi-core touching on ladder supports		0.86	0.82	0.80	0.79	0.78	0.78	0.78	0.77	-	-	-	-	-	-

^{*} Space means a clearance between adjacent surfaces of at least one cable Diam. (De). Where the horizontal clearance between adjacent cables exceeds 2 De, no correction factor need to be applied.

For example, a group of N loaded cables would normally require a group reduction factor of Cg applied to the tabulated Lt. However, if M cables in the group carry loads which are not greater than 0.3Cg Lt amperes, the other cables can be sized by using the group rating factor corresponding to (N-M) cables.

Table 7: Correction Factor for Cables with More Than 4 Loaded Cores

No. of Loaded Cores	5	6	7	10	12	14	19
Correction Factor	0.72	0.67	0.63	0.56	0.53	0.51	0.45
No. of Loaded Cores	24	27	30	37	44	46	48
Correction Factor	0.42	0.40	0.39	0.36	0.34	0.33	0.33

Note: 1. The current-carrying capacity for a cable in the size range 1.5 to 4mm², having more than 4 loaded cores, is obtained by multiplying the current-carrying capacity of a 2-core, having the same installation type, by the factor selected from this table. The current-carrying for the 2-core cable is that for the installation condition to be used for the multi-core cable.

- 2. If due to known operating conditions, a core is expected to carry not more than 30% of its current-carrying capacity in the multi-core cable, it may be ignored for the purpose of obtaining the correction factor for the number of loaded cores.
- 3. If due to known operating conditions, a core is expected to carry not more than 30% of its rating, after applying the correction factor for the total number of current-carrying cores, it may be ignored for the purpose of obtaining the correction factor for the number of loaded cores.

For example, the current-carrying capacity of a cable having N loaded cores would normally be obtained by multiplying the current-carrying capacity of a 2-core, having the same insulation type, by the factor selected from this table for N cores. That is $I_{z1c} = I_{t2c} \times C_{gN}$

Izic is the current-carrying capacity for the multi-core cable after applying the correction factor for the total number of current-carrying cores.

 I_{t2c} is the tablulated current-carrying capacity of a 2-core cable, having the same insulation type as the multi-core cable.

 $C_{\alpha N}$ is the correction factor from Table 7 for the total number of current-carrying cores.

However, if M cores in the cable carry loads which are not greater than $0.3 \times l_{12c} \times C_{gN}$, the current-carrying capacity can be obtained by using the correction factor corresponding to (N-M) cores.

The 'not greater than 0.3 x I_{12c} x C_{gN} ' calculation should be applied before the adjacent multi-core cable grouping factor, if applicable, from Table 6 from BS 7671. The 30% rule should not be further applied to any adjacent cable grouping factor calculations.

 $I_{z|c}$ should be greater than or equal to I_n or I_b as appropriate, divided by the relevant correction factor(s) C, that is $I_{z|c} \ge I_n$ or I_b / C

Note: 1 The factors in the table are applicable to a group of cables of all the same sizes. The value of the current derived from application of the appropriate factors is the maximum continous current to be carried by any of the cables in the group.

² If, due to known operating conditions, a cable is expected to carry not more than 30% of its grouped rating, it may be ignored for the purpose of obtaining the rating factor for the rest of the group.

Table 13: DIN 47100 with Colour Repetition for Multi-Core LiYY, LiYCY Control Cables to DIN VDE 0812

No.	Colour	No.	Colour A	Colour B	No.	Colour A	Colour B	No.	Colour A	Colour B
1	White	11	Grey-	Grey-pink		Yellow-	Yellow-grey		White	
2	Brown	12	Red-	Red-blue		Pink-	green	46	Brown	•
3	Green	13	White-	green	30	Yellow-	pink	47	Green	•
4	Yellow	14	Brown-	green	31	Green-	blue	48	Yellow	•••••
5	Grey	15	White-	yellow	32	Yellow-	blue	49	Grey	
6	Pink	16	Yellow-	brown	33	Green-	red	50	Pink	
7	Blue	17	White-	grey	34	Yellow-	Yellow-red		Blue	
8	Red	18	Grey-	Grey-brown		Green-	Green-black		Red	
9	Black	19	White-	pink	36	Yellow-	Yellow-black		Black	
10	Violet	20	Pink-	brown	37	Grey-	Grey-blue		Violet	
		21	White-	blue	38	Pink-	blue	55	Grey-	pink
		22	Brown-	blue	39	Grey-	pink	56	Red-	blue
		23	White-	red	40	Pink-	red	57	White-	green
		24	Brown-	Brown-red		Grey-	black	58	Brown-	green
		25	White-	black	42	Pink-	black	59	White-	yellow
		26	Brown-	black	43	Blue-	black	60	Yellow-	brown
		27	Grey-	green	44	Red-	black	61	White-	grey

Table 14: DIN 47100 with Colour Repetition for Multi-Pair LiYY-TP, LiYCY-TP Cables to DIN VDE 0812, Pairs Are Repeated After the 22nd Pair, then Repeated After 44 Pairs Again

Pair	A Wire	B Wire	Pair	A Wire	B Wire
1	White	Brown	12	White/red	Brown/red
2	Green	Yellow	13	White/black	Brown/black
3	Grey	Pink	14	Grey/green	Yellow/grey
4	Blue	Red	15	Pink/green	Yellow/pink
5	Black	Violet	16	Green/blue	Yellow/blue
6	Grey/pink	Red/blue	17	Green/red	Yellow/red
7	White/green	Brown/green	18	Green/black	Yellow/black
8	White/yellow	Yellow/brown	19	Grey/blue	Pink/blue
9	White/grey	Grey/brown	20	Grey/red	Pink/red
10	White/pink	Pink/brown	21	Grey/black	Pink/black
11	White/blue	Brown/blue	22	Blue/black	Red/black

Explanation of Colour Code Identification as Follows:

Multi-coloured code identification for core or pair are combined with a basic colour and a colour in form of rings or stripe.

In reference to Table 13, Colour A is the base colour, and Colour B is the secondary colour in the form of rings, printed on top of Colour A. Each ring seperation is 2-3mm. The cores are counted in one direction from the outer layer in.

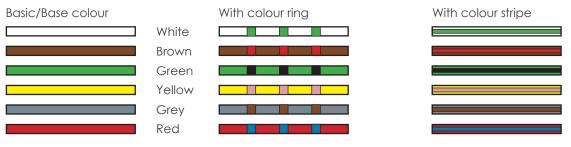


Table 15: For LiYY, LiYCY (1 ~ 4-Core) Cables

Cross- sectional Area No./Diam. of Strand	No./Diam.	Maximum No./Diam. Conductor	Capacitance at 800Hz, 20°C	Capa at 800 F	tiance Hz, 20°C	Minimum	Voltage Test (1 min)	Current
		Resistance at 20°C	Between cores	Between pairs	Pair to ground	Insulation Resistance		Rating at 30°C
(mm²)	(no./mm)	(Ω/km)	(nF/km)	(nF/km)	(nF/km)	(MΩ·km)	(V)	(A)
0.14	18/0.10	148	80			200	1200	1.5
0.25	14/0.15	79.9	100				2500	2.5
0.34	7/0.25	58.0	100					4
0.5	16/0.20	39.0	110	120	160			7
0.75	24/0.20	26.0	110					12
1	32/0.20	19.5	120					15
1.5	30/0.25	13.3	120					18

Table 16: UL 1581, Conductor Configuration and D.C. Resistance

Conductor Size	Class	Class Configuration			Maximum D.C. Resistance at 20°C		
3126	(UL)			Diam.	Plain	Tinned	
(AWG)		(AWG)	(mm)	(mm)	(Ω/km)	(Ω/km)	
24	В	7 x 32	7 x 0.203	0.579	87.6	94.2	
22	В	7 x 30	7 x 0.254	0.729	55.4	59.4	
20	В	7 x 28	7 x 0.320	0.919	34.6	36.7	
18	В	7 x 26	7 x 0.404	1.16	21.8	23.2	
16	С	19 x 29	19 x 0.287	1.49	13.7	14.9	
14	С	19 x 27	19 x 0.361	1.87	8.62	9.32	
12	С	19 x 25	19 x 0.450	2.35	5.43	5.88	

Table 17: UL 1581, Single/Solid Wire Diam.

Conductor Size	Nominal Diam.	Minimum Diam.	Conductor Size	Nominal Diam.	Minimum Diam.	Conductor Size	Nominal Diam.	Minimum Diam.	
(AWG)	(mm)	(mm)	(AWG)	(mm)	(mm)	(AWG)	(mm)	(mm)	
40	0.079	0.077	28	0.320	0.312	16	1.29	1.26	
39	0.089	0.087	27	0.361	0.353	15	1.45	1.42	
38	0.102	0.100	26	0.404	0.396	14	1.63	1.60	
37	0.114	0.112	25	0.455	0.444	13	1.83	1.79	
36	0.127	0.125	24	0.511	0.500	12	2.05	2.01	
35	0.142	0.139	23	0.574	0.561	11	2.30	2.26	
34	0.160	0.157	22	0.643	0.630	10	2.588	2.537	
33	0.180	0.177	21	0.724	0.709	9	2.906	2.847	
32	0.203	0.199	20	0.813	0.798	8	3.264	3.198	
31	0.226	0.222	19	0.912	0.894	7	3.665	3.592	
30	0.254	0.249	18	1.020	1.000	6	4.115	4.034	
29	0.287	0.282	17	1.150	1.130	5	4.620	4.529	
29	0.287	0.282	17	1.150	1.130	5	4.620	4.52	